Some Collider Phenomenology
 of the Minimal Higgsless Model

Neil Christensen
Michigan State University

Based on:
arXiv:0708.2588
In collaboration with:
-Hong-Jian He

- Yu-Ping Kuang
- Yong-Hui Qi
-Bin Zhang
- Alexander Belyaev
-R. Sekhar Chivukula
-Alexander Pukhov
-Elizabeth H. Simmons

$$
a_{0}=\frac{s}{128 \pi M_{W}^{4}}\left[\frac{e^{2}}{s_{W}^{2}} M_{W}^{2}+g_{Z^{\prime} W W}^{2}\left(4 M_{W}^{2}-3 M_{Z^{\prime}}^{2}\right)\right]
$$

-Tower of new gauge bosons:

Higgsless Extra Dimensions.

Dynamical Electroweak Symmetry Breaking (Technicolor).

- Scalar field completions of the links.
-Dynamical completions of the links.
- Some combination...

CalcHEP	MadGraph	HanLib
Unitary Gauge Feynman Gauge	Unitary Gauge	Unitary Gauge Feynman Gauge
	Note: Madgraph 4.1.31 had to be modified to accommodate the 4-point gauge boson vertices in this model.	

$\mathrm{p} p \rightarrow \mathrm{~W} Z \mathrm{Z} \rightarrow \mathrm{j} \mathrm{j} 1111$

Summary

-Unitarity tells us that there is something new beyond the Higgsless SM.
-The next new thing might be a pair of gauge bosons.
-The Minimal Higgsless Model is an effective theory incorporating the physics of these new gauge bosons.
-It can accommodate $\mathrm{S}=0$ with the consequence that the W ' and Z ' are fermiophobic.
-This model is representative of a large class of interesting new physics scenarios.
-The mass of the W ' and Z^{\prime} are bounded to be between $\sim 400 \mathrm{GeV}$ and $\sim 1 \mathrm{TeV}$.
-This entire range is observable at the LHC.
-A 5σ discovery of the process $\mathrm{pp} \rightarrow \mathrm{jjWZ}$ is possible for the entire range of allowed masses in $100 \mathrm{fb}^{-1}$.
-If we discover pp \rightarrow jjWZ then we should search for the complimentary process $\mathrm{pp} \rightarrow \mathrm{j} Z Z$.

Appendix

Birkedal, Matchev \& Perelstein: PRL94(2005)191803

$$
M_{T}^{2}(W Z)=\left(\sqrt{M^{2}(l l l)+p_{T}^{2}(l l l)}+\left|p_{T}^{m i s s}\right|\right)^{2}-\left|p_{T}(l l l)+p_{T}^{m i s s}\right|^{2}
$$

W' decays

- decays into fermions strongly depend on delocalization

$$
\Gamma\left(W^{\prime} \rightarrow e^{+} e^{-}\right)=\frac{e^{2} M_{W^{\prime}} x^{2}\left(1-\frac{2 \epsilon_{L}^{2}}{x^{2}}\right)^{2}}{192 \pi s_{w}^{2}}
$$

$$
\begin{gathered}
p \mathrm{p} \rightarrow \mathrm{j} \text { j Z Z } \\
\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV} \\
\left|\eta_{1}\right|<2.5 \\
\mathrm{p}_{\mathrm{Tj}}>15 \mathrm{GeV} \\
\left|\eta_{\mathrm{j}}\right|<4.5 \\
\mathrm{M}_{\mathrm{ij}}=80 \pm 15 \mathrm{GeV} \\
\Delta \mathrm{R}_{\mathrm{j}}<1.5
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{p} \mathrm{p} \rightarrow \text { j j W Z } \\
\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV} \\
\left|\eta_{1}\right|<2.5 \\
\mathrm{p}_{\mathrm{Tj}}>30 \mathrm{GeV} \\
\left|\eta_{\mathrm{j}}\right|<4.5 \\
\left|\Delta \eta_{\mathrm{j}}\right|>4 \\
\mathrm{E}_{\mathrm{j}}>300 \mathrm{GeV}
\end{gathered}
$$

$$
a_{0}=\frac{s}{128 \pi M_{W}^{4}}\left[\sum_{i} g_{3 \mathrm{i}}^{2}\left(4 \mathrm{M}_{W}^{2}-3 \mathrm{M}_{Z i}^{2}\right)-\sum_{j} g_{h_{j} w W}^{2}\right]
$$

